

IMPLEMENDED BY FRANCE GROUPE AFD FUNDED AND UNDER THE SUPERVISION OF

INTEGRATING ENVIRONMENTAL INDICATORS WITH EPIDEMIOLOGICAL SURVEILLANCE SYSTEMS: AN OPERATIONAL AND ITERATIVE APPROACH

Dr. Florian GIROND, Advisor, Communicable Disease Control Department (CDC), Ministry of Health, Cambodia, International Technical Expert, Expertise France

Dr. Vincent Herbreteau, French National Research Institute for Sustainable Development (IRD), Institute of Technology of Cambodia (ITC)

Liberté Égalité Fraternité AS PART OF THE FRENCH CONTRIBUTION TO

•Increasing number of Earth Observation satellites •Information availability (processing and price) Increasing computing capacities

Potential to provide environmental & meteorological information in real-time to inform disease surveillance

- •Increasing number of Earth Observation satellites Information availability (processing and price)
- Increasing computing capacities

But still no such data populating in near real time health information systems

Recent possibility to integrate weather and climate data into DHIS2 data elements:

Potential to provide environmental & meteorological information in real-time to inform disease surveillance

DHIS2 (Digital Health Information System, dhis2.org)

-> Limited number of variables

-> Based on Google Earth Engine

EARTH OBSERVATION SATELLITES

Table 1

Main characteristics and references of the P-datasets. In the data source column, S, R, and G stands for satellite, reanalysis, and gauge information. Spatial coverage refers to the absolute maximum and minimum latitude with precipitation information, and latency refers to the time delay for data availability. The P-datasets including gauge-based information are represented in blue, and italic font is used for P-datasets available in NRT latency of one to three days.

Acronym	Full Name	Data	Temporal Coverage	Temporal Resolution	Spatial Coverage	Spatial Resolution	Latency	Link	References
ARC-2	Africa Rainfall Climatology v.2	S, G	1983–present	Daily	Africa	0.1°	2 days	ftp://ftp.cpc.ncep.noaa.gov/fews/ fewsdata/africa/arc2/	Novella and Thiaw (2012)
CHIRP v.2	Climate Hazards Group InfraRed v.2	S , R	1981–present	Daily	50°	0.05°	2 days	ftp://ftp.chg.ucsb.edu/pub/org/chg/ products/	Funk et al. (2015)
CHIRPS v.2	CHIRP with Station v.2	S, R, G	1981–present	Daily	50°	0.05°	1 month	ftp://ftp.chg.ucsb.edu/pub/org/chg/ products/	Funk et al. (2015)
CMORPH-Raw v.1	Climate Prediction Center MORPHing raw v.1	S	1998–present	3 h	60°	0.25°	2 days	ftp://ftp.cpc.ncep.noaa.gov/precip/ CMORPH_V1.0/	Joyce et al. (2004)
CMORPH-CRT v.1	CMORPH bias corrected v.1	S, G	1998–present	3 h	60°	0.25°	6 months	ftp://ftp.cpc.ncep.noaa.gov/precip/ CMORPH_V1.0/	Xie et al. (2017)
CMORPH-BLD v.1	CMORPH satellite-gauge merged v.1	S, G	1998–present	Daily	60°	0.25°	10 months	ftp://ftp.cpc.ncep.noaa.gov/precip/ CMORPH_V1.0/	Xie et al. (2017)
CPC v.1	Climate Prediction Center unified v.1	G	1979-present	Daily	Global	0,5°	1 days	ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_ UNI_PRCP/GAUGE_GLB/	Xie et al. (2007) Chen et al. (2008)
ERA-Interim	European Centre for Medium-range Weather Forecast Re Analysis Interim	R	1979–present	3 h	60°	0.75°	3 months	https://www.ecmwf.int/en/forecasts/ datasets/reanalysis-datasets/era- interim-land	Dee et al. (2011)
GSMaP-RT v.6	Global Satellite Mapping of Precipitation standard v.6	S	2000-present	Hourly	60°	0.1°	3 days	ftp://hokusai.eorc.jaxa.jp/standard/v6/	Ushio et al. (2009) Yamamoto and Shige (2014)
GSMaP-Adj v.6	GSMaP adjusted v.6	S , G	2000resent	Hourly	60°	0.1°	3 days	ftp://hokusai.eorc.jaxa.jp/standard/v6/	Ushio et al. (2009) Yamamoto and Shige (2014)
GPCC v.7	Global Precipitation Climatology Center	G	1901–2013	Monthly	Global	1 °	Irregular	https://rda.ucar.edu/datasets/ds496.0/	Becker et al. (2013); Schneider et al. (2014)
JRA-55	Japanese 55-year Re Analysis	R	1959–present	3 h	Global	0,56°	1 Month	https://rda.ucar.edu/datasets/ds628.0/	Kobayashi et al. (2015)
JRA-55 Adj	JRA-55 Adjusted	R,G	1959–2013	3 h	Global	0,56°	Stopped	http://search.diasjp.net/en/dataset/ S14FD	Izumi et al. (2017)
MERRA-2	Modern-Era Retrospective Analysis for Research and Applications 2	S, R, G	1980-present	Hourly	Global	0,5°	2 Months	https://disc.gsfc.nasa.gov/	Gelaro et al. (2017) Reichle et al. (2017)
MSWEP v.2.2	Multi-Source Weighted Ensemble Precipitation v.2.2	S, R, G	1979–present	3 h	Global	0.1°	Few months	http://www.gloh2o.org/ (Personal communication)	Beck et al. (2018) Beck et al. (2019)
PERSIANN-CDR	Precipitation Estimates from Remotely Sensed Information using Artificial Neural Network and Climate Data Record	S , G	1983–2016	Daily	60°	0.25°	6 months	https://chrsdata.eng.uci.edu/	Ashouri et al. (2015)
PERSIANN-RT	PERSIANN real time	S	2000-present	6 h	60°	0.25°	2 days	https://chrsdata.eng.uci.edu/	Hsu et al. (1997) Sorooshian et al. (2000)
PERSIANN-Adj	PERSIANN Adjusted	S, G	2000-2010	3 h	60°	0.25°	Stopped	http://fire.eng.uci.edu/PERSIANN/	Hsu et al. (1997) Sorooshian et al. (2000)
SM2Rain-CCI v.2	Soil Moisture to Rain applied on ESA Climate Change Initiative v.2	S	1998–2015	Daily	Global	0.25°	Stopped	https://zenodo.org/record/846260#. XQEZtYgzZaQ	Ciabatta et al. (2018)
TAMCAT	Transford Applications of Materials and inc	6 6	1000	Delle	A Cuitara	0.0075	0.1	Litter (/ ment to ment one of / - hout	Mailanant et al. (2017)

F. Satgé, et al

Journal of Hy

- Combining evidence from **multiple sources** presents significant data integration and **interoperability** challenges.
- Accessing and processing environmental and weather satellite data for **operational** use remain a limiting factor
 - Most of the time, it leads to strictly **retrospective** analysis.

The necessary workflow can be complex, requiring :

- (i) **automatic** acquisition and processing of large volumes of remote sensing data from online archives,
- (ii) processing of environmental data from disparate sources into a unified database format, and
- (iii) **automatic** updating of the environmental database for rapid availability.

https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health

Environment Analysis and Surveillance to Improve Malaria Elimination Strategies

EASIMES

EASIMES Project aimed to improve the understanding of **environmental conditions which influence malaria transmission** in the forested environments of Eastern Myanmar

support micro stratification and active surveillance tools used by the control and/or elimination programs.

Malaria Elimination Task Force

Community-based access to early diagnosis (RDTs) and treatment (ACTs) of over 1250 malaria posts since 2014

4 main activities:

- Accurate mapping of land-use/land cover and monitoring of fluctuations in environmental conditions
- Defining the malaria epidemiological landscape: Spatio-temporal analysis
- Defining vector-suitable high-risk environments
- Development of a Malaria environmental surveillance system

Environmental indicators

5 days at 10m of spatial resolution

Automated processing chain to obtain :

SEN2COR algorithm : Make atmospheric conditions correction automatically and routinely

Sen2Chain : Process Sentinel2 from L1C to L2A level

Sen2liss : Provide index production and time series computation

Time series of weekly S2 indicators over a buffer of 2000m around each Malaria post

Forest Loss

Global Forest Change Published by Hansen, Potapov, Moore, Hancher et <u>al.</u>

Yearly time series of Forest loss by ha over within a 2000m buffer around each malaria post

Community-based access to early diagnosis (RDTs) and treatment (ACTSs) of over 1250 malaria posts.

Paper-based or digital reporting (email or SMS)

Data are checked and cleaned each week, and any errors in data entry are corrected after communication with the data entry team

Number of fever cases and the number of RDT-confirmed P. falciparum and P. vivax infections by age and gender, etc.

SIMES- Malaria Elimination Task Force Overview Animated Map Data U

SMRU. 🔊 Mahidol Univ

Malaria Elimination Task Force

SMRU. Mahidol University

Forest Loss (Hansen)

+

Malaria post	÷	Date	¢	Cases 🖕	Incidence (/1000) 👙	Age 0 to 5	Age 5 to 15 🔷	Age 15 to 99
mp_2661		2020-10-19		2	11.76	0%	50%	50%
mp_37		2020-10-19		2	22.99	0%	0%	100%
mp_176		2020-10-19		1	9.09	0%	0%	100%
mp_239		2020-10-19		1	4.03	0%	0%	100%
mp_254		2020-10-19		1	6.02	0%	0%	100%
mp_2662		2020-10-19		1	18.18	0%	0%	100%
mp_278		2020-10-19		1	10.31	0%	100%	0%
mp_2982		2020-10-19		1	10.87	0%	0%	100%

Age group

Leaflet | © OpenStreetMap contributors © CARTO

Weekly malaria incidence pf (all malaria posts)

Cross Border Malaria Surveillance

Transborder Malaria Surveillance

malariae

mix

ovale

vivax

Date: 2014-04-28 Overview About

+

SMRU. 💮 🕐

- These platforms enable a dynamic **exchange** and **collaboration** facilitating mutual **understanding** and **knowledge** sharing.
- Interactive One Health surveillance platforms are **meeting places** for experts from different disciplines.
- Environmental surveillance must be implemented across all sectors.
 - KHEOBS Laboratory

- Data visualisation and exploratory analysis techniques for contextualisation and eventually provide evidence to generate new hypotheses to test.
- The importance of **open-source environment**.

Acknowledgments

- Shoklo Malaria Research Unit (SMRU) & METF
- Department of Disease Control, MoPH Thailand
- Communicable Disease Control Department Cambodia
- IRD, UMR ESPACE-DEV
- IRD, UMR SESSTIM
- KHEOBS laboratory
- National Institute of Technology Cambodia
- Université de la Réunion (France)
- Institut Pasteur du Cambodge

Thank you

Institut de **Recherche** pour le **Développement** F R A N C E French National Research Institute for Sustainable Development

กรมควบคุมโรค DEPARTMENT OF DISEASE CONTROL

.

